3.7.39 \(\int \frac {a+b \arcsin (c x)}{(d+e x^2)^2} \, dx\) [639]

3.7.39.1 Optimal result
3.7.39.2 Mathematica [A] (verified)
3.7.39.3 Rubi [A] (verified)
3.7.39.4 Maple [C] (warning: unable to verify)
3.7.39.5 Fricas [F]
3.7.39.6 Sympy [F]
3.7.39.7 Maxima [F(-2)]
3.7.39.8 Giac [F]
3.7.39.9 Mupad [F(-1)]

3.7.39.1 Optimal result

Integrand size = 18, antiderivative size = 757 \[ \int \frac {a+b \arcsin (c x)}{\left (d+e x^2\right )^2} \, dx=-\frac {a+b \arcsin (c x)}{4 d \sqrt {e} \left (\sqrt {-d}-\sqrt {e} x\right )}+\frac {a+b \arcsin (c x)}{4 d \sqrt {e} \left (\sqrt {-d}+\sqrt {e} x\right )}+\frac {b c \text {arctanh}\left (\frac {\sqrt {e}-c^2 \sqrt {-d} x}{\sqrt {c^2 d+e} \sqrt {1-c^2 x^2}}\right )}{4 d \sqrt {e} \sqrt {c^2 d+e}}+\frac {b c \text {arctanh}\left (\frac {\sqrt {e}+c^2 \sqrt {-d} x}{\sqrt {c^2 d+e} \sqrt {1-c^2 x^2}}\right )}{4 d \sqrt {e} \sqrt {c^2 d+e}}-\frac {(a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {(a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {(a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {(a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}} \]

output
-1/4*(a+b*arcsin(c*x))*ln(1-(I*c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^( 
1/2)-(c^2*d+e)^(1/2)))/(-d)^(3/2)/e^(1/2)+1/4*(a+b*arcsin(c*x))*ln(1+(I*c* 
x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(3/2) 
/e^(1/2)-1/4*(a+b*arcsin(c*x))*ln(1-(I*c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I* 
c*(-d)^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(3/2)/e^(1/2)+1/4*(a+b*arcsin(c*x))*ln 
(1+(I*c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))/(- 
d)^(3/2)/e^(1/2)-1/4*I*b*polylog(2,-(I*c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I* 
c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(3/2)/e^(1/2)+1/4*I*b*polylog(2,(I*c*x 
+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(3/2)/ 
e^(1/2)-1/4*I*b*polylog(2,-(I*c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1 
/2)+(c^2*d+e)^(1/2)))/(-d)^(3/2)/e^(1/2)+1/4*I*b*polylog(2,(I*c*x+(-c^2*x^ 
2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(3/2)/e^(1/2)+1 
/4*(-a-b*arcsin(c*x))/d/e^(1/2)/((-d)^(1/2)-x*e^(1/2))+1/4*(a+b*arcsin(c*x 
))/d/e^(1/2)/((-d)^(1/2)+x*e^(1/2))+1/4*b*c*arctanh((-c^2*x*(-d)^(1/2)+e^( 
1/2))/(c^2*d+e)^(1/2)/(-c^2*x^2+1)^(1/2))/d/e^(1/2)/(c^2*d+e)^(1/2)+1/4*b* 
c*arctanh((c^2*x*(-d)^(1/2)+e^(1/2))/(c^2*d+e)^(1/2)/(-c^2*x^2+1)^(1/2))/d 
/e^(1/2)/(c^2*d+e)^(1/2)
 
3.7.39.2 Mathematica [A] (verified)

Time = 1.17 (sec) , antiderivative size = 591, normalized size of antiderivative = 0.78 \[ \int \frac {a+b \arcsin (c x)}{\left (d+e x^2\right )^2} \, dx=\frac {1}{2} \left (\frac {a x}{d^2+d e x^2}+\frac {a \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{d^{3/2} \sqrt {e}}+\frac {b \left (i \sqrt {d} \left (\frac {\arcsin (c x)}{\sqrt {d}+i \sqrt {e} x}-\frac {c \arctan \left (\frac {i \sqrt {e}+c^2 \sqrt {d} x}{\sqrt {c^2 d+e} \sqrt {1-c^2 x^2}}\right )}{\sqrt {c^2 d+e}}\right )+\sqrt {d} \left (\frac {\arcsin (c x)}{i \sqrt {d}+\sqrt {e} x}+\frac {c \text {arctanh}\left (\frac {\sqrt {e}+i c^2 \sqrt {d} x}{\sqrt {c^2 d+e} \sqrt {1-c^2 x^2}}\right )}{\sqrt {c^2 d+e}}\right )+i \arcsin (c x) \left (\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{-c \sqrt {d}+\sqrt {c^2 d+e}}\right )+\log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )-i \arcsin (c x) \left (\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}-\sqrt {c^2 d+e}}\right )+\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )+\operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}-\sqrt {c^2 d+e}}\right )-\operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{-c \sqrt {d}+\sqrt {c^2 d+e}}\right )-\operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )+\operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )}{2 d^{3/2} \sqrt {e}}\right ) \]

input
Integrate[(a + b*ArcSin[c*x])/(d + e*x^2)^2,x]
 
output
((a*x)/(d^2 + d*e*x^2) + (a*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(d^(3/2)*Sqrt[e]) 
 + (b*(I*Sqrt[d]*(ArcSin[c*x]/(Sqrt[d] + I*Sqrt[e]*x) - (c*ArcTan[(I*Sqrt[ 
e] + c^2*Sqrt[d]*x)/(Sqrt[c^2*d + e]*Sqrt[1 - c^2*x^2])])/Sqrt[c^2*d + e]) 
 + Sqrt[d]*(ArcSin[c*x]/(I*Sqrt[d] + Sqrt[e]*x) + (c*ArcTanh[(Sqrt[e] + I* 
c^2*Sqrt[d]*x)/(Sqrt[c^2*d + e]*Sqrt[1 - c^2*x^2])])/Sqrt[c^2*d + e]) + I* 
ArcSin[c*x]*(Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(-(c*Sqrt[d]) + Sqrt[c^2* 
d + e])] + Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d + e 
])]) - I*ArcSin[c*x]*(Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] - Sqr 
t[c^2*d + e])] + Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2 
*d + e])]) + PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] - Sqrt[c^2* 
d + e])] - PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/(-(c*Sqrt[d]) + Sqrt[c^2 
*d + e])] - PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2 
*d + e]))] + PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2* 
d + e])]))/(2*d^(3/2)*Sqrt[e]))/2
 
3.7.39.3 Rubi [A] (verified)

Time = 1.42 (sec) , antiderivative size = 757, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {5172, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \arcsin (c x)}{\left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 5172

\(\displaystyle \int \left (-\frac {e (a+b \arcsin (c x))}{2 d \left (-d e-e^2 x^2\right )}-\frac {e (a+b \arcsin (c x))}{4 d \left (\sqrt {-d} \sqrt {e}-e x\right )^2}-\frac {e (a+b \arcsin (c x))}{4 d \left (\sqrt {-d} \sqrt {e}+e x\right )^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {(a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{-\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {(a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{-\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {(a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {(a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {a+b \arcsin (c x)}{4 d \sqrt {e} \left (\sqrt {-d}-\sqrt {e} x\right )}+\frac {a+b \arcsin (c x)}{4 d \sqrt {e} \left (\sqrt {-d}+\sqrt {e} x\right )}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {d c^2+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {d c^2+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i \sqrt {-d} c+\sqrt {d c^2+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i \sqrt {-d} c+\sqrt {d c^2+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {b c \text {arctanh}\left (\frac {\sqrt {e}-c^2 \sqrt {-d} x}{\sqrt {1-c^2 x^2} \sqrt {c^2 d+e}}\right )}{4 d \sqrt {e} \sqrt {c^2 d+e}}+\frac {b c \text {arctanh}\left (\frac {c^2 \sqrt {-d} x+\sqrt {e}}{\sqrt {1-c^2 x^2} \sqrt {c^2 d+e}}\right )}{4 d \sqrt {e} \sqrt {c^2 d+e}}\)

input
Int[(a + b*ArcSin[c*x])/(d + e*x^2)^2,x]
 
output
-1/4*(a + b*ArcSin[c*x])/(d*Sqrt[e]*(Sqrt[-d] - Sqrt[e]*x)) + (a + b*ArcSi 
n[c*x])/(4*d*Sqrt[e]*(Sqrt[-d] + Sqrt[e]*x)) + (b*c*ArcTanh[(Sqrt[e] - c^2 
*Sqrt[-d]*x)/(Sqrt[c^2*d + e]*Sqrt[1 - c^2*x^2])])/(4*d*Sqrt[e]*Sqrt[c^2*d 
 + e]) + (b*c*ArcTanh[(Sqrt[e] + c^2*Sqrt[-d]*x)/(Sqrt[c^2*d + e]*Sqrt[1 - 
 c^2*x^2])])/(4*d*Sqrt[e]*Sqrt[c^2*d + e]) - ((a + b*ArcSin[c*x])*Log[1 - 
(Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])])/(4*(-d)^(3/ 
2)*Sqrt[e]) + ((a + b*ArcSin[c*x])*Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(I* 
c*Sqrt[-d] - Sqrt[c^2*d + e])])/(4*(-d)^(3/2)*Sqrt[e]) - ((a + b*ArcSin[c* 
x])*Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])]) 
/(4*(-d)^(3/2)*Sqrt[e]) + ((a + b*ArcSin[c*x])*Log[1 + (Sqrt[e]*E^(I*ArcSi 
n[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])])/(4*(-d)^(3/2)*Sqrt[e]) - ((I/4 
)*b*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + 
e]))])/((-d)^(3/2)*Sqrt[e]) + ((I/4)*b*PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x 
]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])])/((-d)^(3/2)*Sqrt[e]) - ((I/4)*b*Pol 
yLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e]))])/ 
((-d)^(3/2)*Sqrt[e]) + ((I/4)*b*PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/(I* 
c*Sqrt[-d] + Sqrt[c^2*d + e])])/((-d)^(3/2)*Sqrt[e])
 

3.7.39.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5172
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x 
_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSin[c*x])^n, (d + e*x^2)^p, x], x 
] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p] && (G 
tQ[p, 0] || IGtQ[n, 0])
 
3.7.39.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 4.14 (sec) , antiderivative size = 828, normalized size of antiderivative = 1.09

method result size
parts \(\frac {a x}{2 d \left (e \,x^{2}+d \right )}+\frac {a \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{2 d \sqrt {d e}}+\frac {b \left (\frac {c^{3} \arcsin \left (c x \right ) x}{2 d \left (c^{2} e \,x^{2}+c^{2} d \right )}-\frac {\sqrt {-e \left (2 c^{2} d -2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right )}\, \left (2 d^{2} c^{4}+2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}\, d \,c^{2}+2 c^{2} e d +\sqrt {d \,c^{2} \left (c^{2} d +e \right )}\, e \right ) c^{2} \arctan \left (\frac {e \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{\sqrt {\left (-2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}-e \right ) e}}\right )}{2 d \left (c^{2} d +e \right ) e^{3}}+\frac {\sqrt {-e \left (2 c^{2} d -2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right )}\, \left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) \arctan \left (\frac {e \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{\sqrt {\left (-2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}-e \right ) e}}\right ) c^{2}}{2 d \,e^{3}}-\frac {\sqrt {\left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) e}\, \left (-2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}\, d \,c^{2}+2 d^{2} c^{4}+2 c^{2} e d -\sqrt {d \,c^{2} \left (c^{2} d +e \right )}\, e \right ) c^{2} \operatorname {arctanh}\left (\frac {e \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{\sqrt {\left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) e}}\right )}{2 d \left (c^{2} d +e \right ) e^{3}}+\frac {\sqrt {\left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) e}\, \left (2 c^{2} d -2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) \operatorname {arctanh}\left (\frac {e \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{\sqrt {\left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) e}}\right ) c^{2}}{2 d \,e^{3}}+\frac {c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e -2 c^{2} d -e \right )}\right )}{4 d}+\frac {c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\textit {\_R1} \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} e -2 c^{2} d -e}\right )}{4 d}\right )}{c}\) \(828\)
derivativedivides \(\frac {\frac {a \,c^{3} x}{2 d \left (c^{2} e \,x^{2}+c^{2} d \right )}+\frac {a c \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{2 d \sqrt {d e}}+b \,c^{4} \left (\frac {\arcsin \left (c x \right ) x}{2 c d \left (c^{2} e \,x^{2}+c^{2} d \right )}-\frac {\sqrt {\left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) e}\, \left (-2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}\, d \,c^{2}+2 d^{2} c^{4}+2 c^{2} e d -\sqrt {d \,c^{2} \left (c^{2} d +e \right )}\, e \right ) \operatorname {arctanh}\left (\frac {e \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{\sqrt {\left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) e}}\right )}{2 d \,c^{2} \left (c^{2} d +e \right ) e^{3}}+\frac {\sqrt {\left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) e}\, \left (2 c^{2} d -2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) \operatorname {arctanh}\left (\frac {e \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{\sqrt {\left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) e}}\right )}{2 c^{2} d \,e^{3}}-\frac {\sqrt {-e \left (2 c^{2} d -2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right )}\, \left (2 d^{2} c^{4}+2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}\, d \,c^{2}+2 c^{2} e d +\sqrt {d \,c^{2} \left (c^{2} d +e \right )}\, e \right ) \arctan \left (\frac {e \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{\sqrt {\left (-2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}-e \right ) e}}\right )}{2 d \,c^{2} \left (c^{2} d +e \right ) e^{3}}+\frac {\sqrt {-e \left (2 c^{2} d -2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right )}\, \left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) \arctan \left (\frac {e \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{\sqrt {\left (-2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}-e \right ) e}}\right )}{2 c^{2} d \,e^{3}}-\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (-\textit {\_R1}^{2} e +2 c^{2} d +e \right )}}{4 c^{2} d}-\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\textit {\_R1} \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{-\textit {\_R1}^{2} e +2 c^{2} d +e}}{4 c^{2} d}\right )}{c}\) \(841\)
default \(\frac {\frac {a \,c^{3} x}{2 d \left (c^{2} e \,x^{2}+c^{2} d \right )}+\frac {a c \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{2 d \sqrt {d e}}+b \,c^{4} \left (\frac {\arcsin \left (c x \right ) x}{2 c d \left (c^{2} e \,x^{2}+c^{2} d \right )}-\frac {\sqrt {\left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) e}\, \left (-2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}\, d \,c^{2}+2 d^{2} c^{4}+2 c^{2} e d -\sqrt {d \,c^{2} \left (c^{2} d +e \right )}\, e \right ) \operatorname {arctanh}\left (\frac {e \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{\sqrt {\left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) e}}\right )}{2 d \,c^{2} \left (c^{2} d +e \right ) e^{3}}+\frac {\sqrt {\left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) e}\, \left (2 c^{2} d -2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) \operatorname {arctanh}\left (\frac {e \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{\sqrt {\left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) e}}\right )}{2 c^{2} d \,e^{3}}-\frac {\sqrt {-e \left (2 c^{2} d -2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right )}\, \left (2 d^{2} c^{4}+2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}\, d \,c^{2}+2 c^{2} e d +\sqrt {d \,c^{2} \left (c^{2} d +e \right )}\, e \right ) \arctan \left (\frac {e \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{\sqrt {\left (-2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}-e \right ) e}}\right )}{2 d \,c^{2} \left (c^{2} d +e \right ) e^{3}}+\frac {\sqrt {-e \left (2 c^{2} d -2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right )}\, \left (2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}+e \right ) \arctan \left (\frac {e \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{\sqrt {\left (-2 c^{2} d +2 \sqrt {d \,c^{2} \left (c^{2} d +e \right )}-e \right ) e}}\right )}{2 c^{2} d \,e^{3}}-\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (-\textit {\_R1}^{2} e +2 c^{2} d +e \right )}}{4 c^{2} d}-\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\textit {\_R1} \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{-\textit {\_R1}^{2} e +2 c^{2} d +e}}{4 c^{2} d}\right )}{c}\) \(841\)

input
int((a+b*arcsin(c*x))/(e*x^2+d)^2,x,method=_RETURNVERBOSE)
 
output
1/2*a*x/d/(e*x^2+d)+1/2*a/d/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))+b/c*(1/2*c 
^3*arcsin(c*x)*x/d/(c^2*e*x^2+c^2*d)-1/2*(-e*(2*c^2*d-2*(d*c^2*(c^2*d+e))^ 
(1/2)+e))^(1/2)*(2*d^2*c^4+2*(d*c^2*(c^2*d+e))^(1/2)*d*c^2+2*c^2*e*d+(d*c^ 
2*(c^2*d+e))^(1/2)*e)*c^2*arctan(e*(I*c*x+(-c^2*x^2+1)^(1/2))/((-2*c^2*d+2 
*(d*c^2*(c^2*d+e))^(1/2)-e)*e)^(1/2))/d/(c^2*d+e)/e^3+1/2*(-e*(2*c^2*d-2*( 
d*c^2*(c^2*d+e))^(1/2)+e))^(1/2)*(2*c^2*d+2*(d*c^2*(c^2*d+e))^(1/2)+e)*arc 
tan(e*(I*c*x+(-c^2*x^2+1)^(1/2))/((-2*c^2*d+2*(d*c^2*(c^2*d+e))^(1/2)-e)*e 
)^(1/2))*c^2/d/e^3-1/2*((2*c^2*d+2*(d*c^2*(c^2*d+e))^(1/2)+e)*e)^(1/2)*(-2 
*(d*c^2*(c^2*d+e))^(1/2)*d*c^2+2*d^2*c^4+2*c^2*e*d-(d*c^2*(c^2*d+e))^(1/2) 
*e)*c^2*arctanh(e*(I*c*x+(-c^2*x^2+1)^(1/2))/((2*c^2*d+2*(d*c^2*(c^2*d+e)) 
^(1/2)+e)*e)^(1/2))/d/(c^2*d+e)/e^3+1/2*((2*c^2*d+2*(d*c^2*(c^2*d+e))^(1/2 
)+e)*e)^(1/2)*(2*c^2*d-2*(d*c^2*(c^2*d+e))^(1/2)+e)*arctanh(e*(I*c*x+(-c^2 
*x^2+1)^(1/2))/((2*c^2*d+2*(d*c^2*(c^2*d+e))^(1/2)+e)*e)^(1/2))*c^2/d/e^3+ 
1/4/d*c^2*sum(1/_R1/(_R1^2*e-2*c^2*d-e)*(I*arcsin(c*x)*ln((_R1-I*c*x-(-c^2 
*x^2+1)^(1/2))/_R1)+dilog((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/_R1)),_R1=RootOf( 
e*_Z^4+(-4*c^2*d-2*e)*_Z^2+e))+1/4/d*c^2*sum(_R1/(_R1^2*e-2*c^2*d-e)*(I*ar 
csin(c*x)*ln((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/_R1)+dilog((_R1-I*c*x-(-c^2*x^ 
2+1)^(1/2))/_R1)),_R1=RootOf(e*_Z^4+(-4*c^2*d-2*e)*_Z^2+e)))
 
3.7.39.5 Fricas [F]

\[ \int \frac {a+b \arcsin (c x)}{\left (d+e x^2\right )^2} \, dx=\int { \frac {b \arcsin \left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate((a+b*arcsin(c*x))/(e*x^2+d)^2,x, algorithm="fricas")
 
output
integral((b*arcsin(c*x) + a)/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 
3.7.39.6 Sympy [F]

\[ \int \frac {a+b \arcsin (c x)}{\left (d+e x^2\right )^2} \, dx=\int \frac {a + b \operatorname {asin}{\left (c x \right )}}{\left (d + e x^{2}\right )^{2}}\, dx \]

input
integrate((a+b*asin(c*x))/(e*x**2+d)**2,x)
 
output
Integral((a + b*asin(c*x))/(d + e*x**2)**2, x)
 
3.7.39.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \arcsin (c x)}{\left (d+e x^2\right )^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*arcsin(c*x))/(e*x^2+d)^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.7.39.8 Giac [F]

\[ \int \frac {a+b \arcsin (c x)}{\left (d+e x^2\right )^2} \, dx=\int { \frac {b \arcsin \left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate((a+b*arcsin(c*x))/(e*x^2+d)^2,x, algorithm="giac")
 
output
integrate((b*arcsin(c*x) + a)/(e*x^2 + d)^2, x)
 
3.7.39.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \arcsin (c x)}{\left (d+e x^2\right )^2} \, dx=\int \frac {a+b\,\mathrm {asin}\left (c\,x\right )}{{\left (e\,x^2+d\right )}^2} \,d x \]

input
int((a + b*asin(c*x))/(d + e*x^2)^2,x)
 
output
int((a + b*asin(c*x))/(d + e*x^2)^2, x)